sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 1 Vector Spaces

1. Let *S* be any nonempty set and *F* be any field, and let $\mathcal{F}(S, F)$ denote the set of all functions from *S* to *F*. Define vector addition and scalar multiplication on $\mathcal{F}(S, F)$ over *F* as follows :

For $f, g \in \mathcal{F}(S, F)$ and $\alpha \in F$, (f + g)(s) = f(s) + g(s) and (cf)(s) = cf(s) for each $s \in S$. Prove that $\mathcal{F}(S, F)$ is a vector space over the field F with respect to the operations defined as above.

- 2. Let *F* be a field and P(F) denote the set of polynomials with coefficients from the field *F*. With respect to the usual addition of polynomials and scalar multiplication, prove that P(F) is a vector space over *F*.
- 3. Label the following statements are true or false.
 - (a) In any vector space, ax = bx implies that a = b.
 - (b) In any vector space, ax = ay implies that x = y.
 - (c) In P(F), only polynomials of the same degree may be added.
 - (d) If f and g are polynomials of degree n, then f + g is a polynomial of degree n.
 - (e) Two functions in $\mathcal{F}(S, F)$ are equal if and only if they have the same value at each element of *S*.
- 4. Let *V* denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of *V* and $c \in \mathbb{R}$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and $c(a_1, a_2) = (ca_1, a_2)$. Is *V* a vector space over \mathbb{R} with these operations? Justify your answer.
- 5. Let *F* be a field and let $M_{m \times n}(F)$ denote the set of all $m \times n$ matrices with entries are from the field *F*. Define vector addition and scalar multiplication on $M_{m \times n}(F)$ over *F* as follows :

For $A, B \in M_{m \times n}(F)$ and $\alpha \in F$, $(A + B)_{ij} = A_{ij} + B_{ij}$ and $(\alpha A)_{ij} = \alpha A_{ij}$ for $1 \le i \le m$ and $1 \le j \le n$. Prove that $M_{m \times n}(F)$ is a vector space over the field F with respect to the operations defined as above.

- 6. Let $V = \{(a_1, a_2) : a_1, a_2 \in F\}$, where *F* is a field. Define addition of elements of *V* coordinatewise, and for $c \in F$ and $(a_1, a_2) \in V$, define $c(a_1, a_2) = (a_1, 0)$. Is *V* a vector space over *F* with these operations? Justify your answer.
- 7. Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$. In each of the following, is V a vector space over \mathbb{R} with these operations defined below? Justify your answer.
 - (a) $(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$.
 - (b) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$.
 - (c) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, 0)$ and $c(a_1, a_2) = (ca_1, 0)$.
 - (d) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and $c(a_1, a_2) = (ca_1, a_2)$.
- 8. Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. Define addition of elements of *V* coordinatewise, and for (a_1, a_2) in *V* and $c \in \mathbb{R}$, define

$$c(a_1, a_2) = \begin{cases} (0, 0) & \text{if } c = 0.\\ (ca_1, a_2/c) & \text{if } c \neq 0. \end{cases}$$

Is *V* a vector space over \mathbb{R} with these operations? Justify your answer.

- 9. How many matrices are there in the vector space $M_{m \times n}(\mathbb{Z}_2)$?
- 10. If *V* is a vector space over the field *F*, Verify that (a + b) + (c + d) = [b + (c + a)] + d for all vectors *a*, *b*, *c* and *d* in *V*.
- 11. On \mathbb{R}^n , define two operations $x \oplus y = x y$ and c.x = -cx. The operations on the right are the usual ones, which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, .)$?
- 12. Let *V* be the set of all complex-valued functions *f* on the real line such that (for all *t* in \mathbb{R}) $f(-t) = \overline{f(t)}$. The bar denotes complex conjugation. Show that *V* with the operations

$$(f+g)(t) = f(t) + g(t)$$

(cf)(t) = cf(t)

is a vector space over the field of real numbers. Give an example of a function in *V* which is not real-valued.

- 13. Let *W* be of all ordered triplets (x_1, x_2, x_3) of real numbers such that $\frac{x_1}{3} = \frac{x_2}{4} = \frac{x_3}{2}$. Is *W* is a real vector space (vector space over \mathbb{R}) with respect to the usual operations in \mathbb{R}^3 .
- 14. Is \mathbb{R} with usual addition and multiplication a vector space over the filed of rational numbers?
- 15. Does the power set of a set Ω (all subsets of Ω) form a vector space over $F = \{0, 1\}$ with the operations given below? The sum of *A* and *B* is defined to be their symmetric difference :

$$A\Delta B = (A - B) \cup (B - A).$$

The scalar multiple αA is defined to be A if $\alpha = 1$ and \emptyset (the null set) if $\alpha = 0$. Also find which of the axioms will be violated if addition of vectors is changed to $A + B = A \cup B$.

- 16. In each of the following, find precisely which axioms in the definition of a vector space are violated. Take $V = \mathbb{R}^2$ and $F = \mathbb{R}$ throughout.
 - (a) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, 0)$ and $c(a_1, a_2) = (ca_1, 0)$
 - (b) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (ca_1, 0)$
 - (c) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (ca_1, 2ca_2)$
 - (d) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (c + a_1, c + a_2)$.
- 17. Show that the set of all positive real numbers forms a vector space over \mathbb{R} if the sum of *x* and *y* is defined to be the usual product *xy* and α times *x* is defined to be x^{α} .
- 18. In the vector space F^3 where $F = \mathbb{Z}_3$, compute : (1,1,2) + (0,2,2), the negative of (0,1,2) and 2(1,1,2).
- 19. If *G* is a field and $F \subseteq G$ forms a subfield, show that *G* is a vector space over *F*. (What are the operations of this vector space?)
