Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

Advanced Linear Algebra (MA 409)
 Problem Sheet - 1
 Vector Spaces

1. Let S be any nonempty set and F be any field, and let $\mathcal{F}(S, F)$ denote the set of all functions from S to F. Define vector addition and scalar multiplication on $\mathcal{F}(S, F)$ over F as follows :
For $f, g \in \mathcal{F}(S, F)$ and $\alpha \in F,(f+g)(s)=f(s)+g(s)$ and $(c f)(s)=c f(s)$ for each $s \in S$. Prove that $\mathcal{F}(S, F)$ is a vector space over the field F with respect to the operations defined as above.
2. Let F be a field and $P(F)$ denote the set of polynomials with coefficients from the field F. With respect to the usual addition of polynomials and scalar multiplication, prove that $P(F)$ is a vector space over F.
3. Label the following statements are true or false.
(a) In any vector space, $a x=b x$ implies that $a=b$.
(b) In any vector space, $a x=a y$ implies that $x=y$.
(c) In $P(F)$, only polynomials of the same degree may be added.
(d) If f and g are polynomials of degree n, then $f+g$ is a polynomial of degree n.
(e) Two functions in $\mathcal{F}(S, F)$ are equal if and only if they have the same value at each element of S.
4. Let V denote the set of ordered pairs of real numbers. If $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ are elements of V and $c \in \mathbb{R}$, define $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, a_{2}\right)$. Is V a vector space over \mathbb{R} with these operations? Justify your answer.
5. Let F be a field and let $M_{m \times n}(F)$ denote the set of all $m \times n$ matrices with entries are from the field F. Define vector addition and scalar multiplication on $M_{m \times n}(F)$ over F as follows :
For $A, B \in M_{m \times n}(F)$ and $\alpha \in F,(A+B)_{i j}=A_{i j}+B_{i j}$ and $(\alpha A)_{i j}=\alpha A_{i j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. Prove that $M_{m \times n}(F)$ is a vector space over the field F with respect to the operations defined as above.
6. Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in F\right\}$, where F is a field. Define addition of elements of V coordinatewise, and for $c \in F$ and $\left(a_{1}, a_{2}\right) \in V$, define $c\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right)$. Is V a vector space over F with these operations? Justify your answer.
7. Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$. In each of the following, is V a vector space over \mathbb{R} with these operations defined below? Justify your answer.
(a) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+2 b_{1}, a_{2}+3 b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)$.
(b) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)$.
(c) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, 0\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, 0\right)$.
(d) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, a_{2}\right)$.
8. Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. Define addition of elements of V coordinatewise, and for $\left(a_{1}, a_{2}\right)$ in V and $c \in \mathbb{R}$, define

$$
c\left(a_{1}, a_{2}\right)= \begin{cases}(0,0) & \text { if } c=0 \\ \left(c a_{1}, a_{2} / c\right) & \text { if } c \neq 0\end{cases}
$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.
9. How many matrices are there in the vector space $M_{m \times n}\left(\mathbb{Z}_{2}\right)$?
10. If V is a vector space over the field F, Verify that $(a+b)+(c+d)=[b+(c+a)]+d$ for all vectors a, b, c and d in V.
11. On \mathbb{R}^{n}, define two operations $x \oplus y=x-y$ and $c . x=-c x$. The operations on the right are the usual ones, which of the axioms for a vector space are satisfied by $\left(\mathbb{R}^{n}, \oplus,.\right)$?
12. Let V be the set of all complex-valued functions f on the real line such that (for all t in \mathbb{R}) $f(-t)=\overline{\mathrm{f}(\mathrm{t})}$. The bar denotes complex conjugation. Show that V with the operations

$$
\begin{aligned}
(f+g)(t) & =f(t)+g(t) \\
(c f)(t) & =c f(t)
\end{aligned}
$$

is a vector space over the field of real numbers. Give an example of a function in V which is not real-valued.
13. Let W be of all ordered triplets $\left(x_{1}, x_{2}, x_{3}\right)$ of real numbers such that $\frac{x_{1}}{3}=\frac{x_{2}}{4}=\frac{x_{3}}{2}$. Is W is a real vector space (vector space over \mathbb{R}) with respect to the usual operations in \mathbb{R}^{3}.
14. Is \mathbb{R} with usual addition and multiplication a vector space over the filed of rational numbers?
15. Does the power set of a set Ω (all subsets of Ω) form a vector space over $F=\{0,1\}$ with the operations given below? The sum of A and B is defined to be their symmetric difference :

$$
A \Delta B=(A-B) \cup(B-A) .
$$

The scalar multiple αA is defined to be A if $\alpha=1$ and \varnothing (the null set) if $\alpha=0$. Also find which of the axioms will be violated if addition of vectors is changed to $A+B=A \cup B$.
16. In each of the following, find precisely which axioms in the definition of a vector space are violated. Take $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$ throughout.
(a) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, 0\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, 0\right)$
(b) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, 0\right)$
(c) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, 2 c a_{2}\right)$
(d) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c+a_{1}, c+a_{2}\right)$.
17. Show that the set of all positive real numbers forms a vector space over \mathbb{R} if the sum of x and y is defined to be the usual product $x y$ and α times x is defined to be x^{α}.
18. In the vector space F^{3} where $F=\mathbb{Z}_{3}$, compute : $(1,1,2)+(0,2,2)$, the negative of $(0,1,2)$ and $2(1,1,2)$.
19. If G is a field and $F \subseteq G$ forms a subfield, show that G is a vector space over F. (What are the operations of this vector space?)

